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Let εn be a primitve n-th root of unity, e.g. εn := e2πi/n.

Define the group of Cyclotomic Units C(n) as

C(n) := Z[εn]∗ ∩ 〈1− εa
n; a = 1, . . . , n− 1〉mult

C(∞) :=
⋃

n∈N

C(n)

Examples:

• Generators:

1− ε12, 1− ε30, 1− ε91
105,

1− ε2
5

1− ε5

,
1− ε13

81

1− ε81

, ...

• Products and Quotients of generators:

(1− ε12)
1− ε2

5

1− ε3
5

(1− ε7
60)

3,
(1− ε3

17)(1− ε15)
2(1− ε5)

(1− ε2
17)(1− ε2

5)
, ...
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— Applications of Cyclotomic Units —

Cyclotomic Fields (Algebraic Number Theory):

[Z[εn]∗ : C(n)] <∞

(hn = 1⇒ [Z[εn]∗ : C(n)] = 1)

Used in Kummer’s approach to FLT:

zp − yp =
p−1∏

a=0

(z − εa
py) = xp

Units in cyclic grouprings (K. Hoechsmann, 1986ff):

ZCn
∼= Z[x]/xn − 1

x7→εn−→ Z[εn]
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— Obvious Relations —

Symmetry (involution, complex conjugation):

1− εn = −εn(1− ε−1
n ) (S)

Normrelations:
p−1∏

i=0

(1− εi
pη) = 1− ηp (N)

Example for n = 15:

(1− ε5)(1− ε3ε5)(1− ε2
3ε5) = 1− ε3

5

can be rearranged as:

(1− ε8
15)(1− ε13

15) =
1− ε3

5

1− ε5

with εd := εn/d
n for d|n.
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Some remarks on the history of C(n)

Franz (1935) proves an “independence” theorem for C(n).

Ramachandra (1966) gives a system of independent units

generating a subgroup of finite index in C(n).

Milnor (1966) (according to Bass) conjectured that all

relations in C(n) are of type (N) or (S).

Ennola (1972) showed a relation in C(n) that is not a

combination of (N) and (S) relations.

Sinnot (1978) computes the index of C(n) in the full unit

group (and the Stickelberger ideal ...).

Schmidt (1980) links Sinnot’s results to relations between

cyclotomic units (and the Stickelberger ideal ...).

Kučera (1992) gives a basis for C(n) (n <∞) (and ...).
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• Forget about units.

Consider D(n) generated by 1− εa
n.

• Forget about torsion: (S) becomes 1− εn ≡ 1− ε−1
n .

• Forget about C(d) with d < n.

Consider D̂(n) := D(n)/
∏

d|n,d 6=n D(d).

Use Gn
∼= Gp1 × . . .×Gpr

(Gn = (Z/nZ)∗, n = p1 · · · pr sqf.)

(N) becomes
∏

i∈Gp

(1− ε(i,a2,...,ar)
n ) ≡ 1

• Forget about 1, −, ε, n, use
∑

instead of
∏

, and get:

(a1, . . . , ar) = (−a1, . . . ,−ar) (S)
p∑

i=0

(i, a2, . . . , ar) = 0 (N)

Stickelberger ideal: (a1, . . . , ar) = −(−a1, . . . ,−ar)
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Let n = p1 · · · pr be square free, odd and composite.

Consider the free Z-module Mn over Gp1 × . . .×Gpr
and

ξn : Mn/ ker ξn
∼= D̂(n)

with

• ξn(a1, . . . , ar) = 1− εa
n where ai ≡ a mod pi,

• ξn(
∑

. . .) =
∏

. . ..

Relations in D̂(n) ←→ ker ξn

Dirichlet’s unit theorem [...] ⇒

rank D(n) = 1
2
ϕ(n) + r − 1, therefore

rank Mn/ ker ξn = rank D̂(n) = 1
2

r∏

i=1

(ϕ(pi)− 1)− 1
2

+ (−1)r

Task: Find a basis of Mn/ ker ξn


