Let ϵ_{n} be a primitve n-th root of unity, e.g. $\epsilon_{n}:=e^{2 \pi i / n}$. Define the group of Cyclotomic Units $C^{(n)}$ as

$$
\begin{aligned}
& C^{(n)}:=\mathrm{Z}\left[\epsilon_{n}\right]^{*} \cap\left\langle 1-\epsilon_{n}^{a} ; a=1, \ldots, n-1\right\rangle_{\text {mult }} \\
& C^{(\infty)}:=\bigcup_{n \in \mathbf{N}} C^{(n)}
\end{aligned}
$$

Examples:

- Generators:

$$
1-\epsilon_{12}, 1-\epsilon_{30}, 1-\epsilon_{105}^{91}, \frac{1-\epsilon_{5}^{2}}{1-\epsilon_{5}}, \frac{1-\epsilon_{81}^{13}}{1-\epsilon_{81}}, \ldots
$$

- Products and Quotients of generators:

$$
\left(1-\epsilon_{12}\right) \frac{1-\epsilon_{5}^{2}}{1-\epsilon_{5}^{3}}\left(1-\epsilon_{60}^{7}\right)^{3}, \frac{\left(1-\epsilon_{17}^{3}\right)\left(1-\epsilon_{15}\right)^{2}\left(1-\epsilon_{5}\right)}{\left(1-\epsilon_{17}^{2}\right)\left(1-\epsilon_{5}^{2}\right)}, \ldots
$$

- Applications of Cyclotomic Units -

Cyclotomic Fields (Algebraic Number Theory):

$$
\begin{aligned}
& {\left[\mathbf{Z}\left[\epsilon_{n}\right]^{*}: C^{(n)}\right]<\infty} \\
& \left(h_{n}=1 \Rightarrow\left[\mathbf{Z}\left[\epsilon_{n}\right]^{*}: C^{(n)}\right]=1\right)
\end{aligned}
$$

Used in Kummer's approach to FLT:

$$
z^{p}-y^{p}=\prod_{a=0}^{p-1}\left(z-\epsilon_{p}^{a} y\right)=x^{p}
$$

Units in cyclic grouprings (K. Hoechsmann, 1986ff):

$$
\mathbf{Z} C_{n} \cong \mathbf{Z}[x] / x^{n}-1 \quad \xrightarrow{x \mapsto \epsilon_{n}} \quad \mathbf{Z}\left[\epsilon_{n}\right]
$$

- Obvious Relations -

Symmetry (involution, complex conjugation):

$$
\begin{equation*}
1-\epsilon_{n}=-\epsilon_{n}\left(1-\epsilon_{n}^{-1}\right) \tag{S}
\end{equation*}
$$

Normrelations:

$$
\prod_{i=0}^{p-1}\left(1-\epsilon_{p}^{i} \eta\right)=1-\eta^{p}
$$

Example for $n=15$:

$$
\left(1-\epsilon_{5}\right)\left(1-\epsilon_{3} \epsilon_{5}\right)\left(1-\epsilon_{3}^{2} \epsilon_{5}\right)=1-\epsilon_{5}^{3}
$$

can be rearranged as:
$\left(1-\epsilon_{15}^{8}\right)\left(1-\epsilon_{15}^{13}\right)=\frac{1-\epsilon_{5}^{3}}{1-\epsilon_{5}} \quad$ with $\epsilon_{d}:=\epsilon_{n}^{n / d}$ for $d \mid n$.

Some remarks on the history of $C^{(n)}$
Franz (1935) proves an "independence" theorem for $C^{(n)}$. Ramachandra (1966) gives a system of independent units generating a subgroup of finite index in $C^{(n)}$. Milnor (1966) (according to Bass) conjectured that all relations in $C^{(n)}$ are of type (N) or (S).
Ennola (1972) showed a relation in $C^{(n)}$ that is not a combination of (N) and (S) relations.
Sinnot (1978) computes the index of $C^{(n)}$ in the full unit group (and the Stickelberger ideal ...).
Schmidt (1980) links Sinnot's results to relations between cyclotomic units (and the Stickelberger ideal ...).
Kučera (1992) gives a basis for $C^{(n)}(n<\infty)$ (and ...).

- Forget about units.

Consider $D^{(n)}$ generated by $1-\epsilon_{n}^{a}$.

- Forget about torsion: (S) becomes $1-\epsilon_{n} \equiv 1-\epsilon_{n}^{-1}$.
- Forget about $C^{(d)}$ with $d<n$.

Consider $\widehat{D^{(n)}}:=D^{(n)} / \prod_{d \mid n, d \neq n} D^{(d)}$.
Use $G_{n} \cong G_{p_{1}} \times \ldots \times G_{p_{r}}\left(G_{n}=(\mathbf{Z} / n \mathbf{Z})^{*}, n=p_{1} \cdots p_{r}\right.$ sq. $)$
(N) becomes $\prod_{i \in G_{p}}\left(1-\epsilon_{n}^{\left(i, a_{2}, \ldots, a_{r}\right)}\right) \equiv 1$

- Forget about $1,-, \epsilon, n$, use \sum instead of Π, and get:

$$
\begin{align*}
& \left(a_{1}, \ldots, a_{r}\right)=\left(-a_{1}, \ldots,-a_{r}\right) \tag{S}\\
& \sum_{i=0}^{p}\left(i, a_{2}, \ldots, a_{r}\right)=0 \tag{N}
\end{align*}
$$

$$
\text { Stickelberger ideal: }\left(a_{1}, \ldots, a_{r}\right)=-\left(-a_{1}, \ldots,-a_{r}\right)
$$

Let $n=p_{1} \cdots p_{r}$ be square free, odd and composite.
Consider the free Z-module M_{n} over $G_{p_{1}} \times \ldots \times G_{p_{r}}$ and

$$
\overline{\xi_{n}}: \quad M_{n} / \operatorname{ker} \xi_{n} \cong \widehat{D^{(n)}}
$$

with

- $\xi_{n}\left(a_{1}, \ldots, a_{r}\right)=1-\epsilon_{n}^{a}$ where $a_{i} \equiv a \bmod p_{i}$,
- $\xi_{n}\left(\sum \ldots\right)=\Pi \ldots$

$$
\text { Relations in } \widehat{D^{(n)}} \longleftrightarrow \operatorname{ker} \xi_{n}
$$

Dirichlet's unit theorem [...] \Rightarrow
$\operatorname{rank} D^{(n)}=\frac{1}{2} \varphi(n)+r-1$, therefore
$\operatorname{rank} M_{n} / \operatorname{ker} \xi_{n}=\operatorname{rank} \widehat{D^{(n)}}=\frac{1}{2} \prod_{i=1}^{r}\left(\varphi\left(p_{i}\right)-1\right)-\frac{1}{2}+(-1)^{r}$
Task: Find a basis of $M_{n} / \operatorname{ker} \xi_{n}$

