
— Weak σ-bases —

Let M be a module with an involution σ.

A weak σ-basis of M is a triple [E0, E+, E−] of subsets of M such that
the union

B = E0 ∪ σE0 ∪ E+ ∪ E−

is disjoint, B is a basis of M and

σe ≡ e mod 〈E0 ∪ σE0〉 for e ∈ E+,

σe ≡ −e mod 〈E0 ∪ σE0〉 for e ∈ E−.

We write B = [E0, E+, E−] for short.

Note that

m+ = m+(M) = |E+| and m− = m−(M) = |E−|

are invariants of M . We have

H0(σ,M) ∼= Fm+

2 and H1(σ,M) ∼= Fm−
2 .
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— Examples —

A = {a, σa, b, σb}, E = {
∑
x∈A

x}:

[{a, b}, ∅, ∅] defines a weak σ-basis of 〈A〉,
[{a}, ∅, {b}] defines a weak σ-basis of 〈A〉/〈E〉.

Let

B = [E0, E+, E−] be a weak σ-basis of M .

C = [F 0, F+, F−] be a weak σ-basis of L.

Then [G0, G+, G−] ⊆M × L with

G0 = (E0 × C) ∪ (E+ × F 0) ∪ (E− × F 0),

G+ = (E+ × F+) ∪ (E− × F−),

G− = (E+ × F−) ∪ (E− × F+)

defines a weak σ-basis of M ⊗ L.
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— Exact Sequences —

Let [E0, E+, E−] be a weak σ-basis of M . Then
E0 ∪ E+ defines a basis of M+ = M/ kerM (σ + 1).

Lemma 1 Given an exact sequence

0→M → L→ K → 0. (∗)

Let [F 0, F+, F−] ⊆ L define a weak σ-basis of K. If (∗) splits over σ then
E0 ∪ E+ ∪ F 0 ∪ F+ defines a basis of L+.

Lemma 2 Let

0 = L(0) ≤ L(1) ≤ · · · ≤ L(i) ≤ · · · ≤ L =
∞⋃
i=0

L(i).

be a chain with the property that for every i ∈ N there exists a module M (i)

such that the sequence

0→ L(i−1) → L(i) →M (i) → 0

is exact and splits over σ. If B(i)
+ ⊆ L(i) defines a basis of M (i)

+ for all i ∈ N

then
∞⋃
i=1

B
(i)
+ defines a basis of L+.
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— MEn-systems —

Let ∆ be an appropriate indexing set and for d ∈ ∆:

Md a module,

Ed ⊆Md,

nd : Ed →
⊕
t<d

Mt a mapping.

Then we call the module L = N/Q with

N =
⊕
t∈∆

Mt,

Q =
∑
t∈∆

〈r + nt(r); r ∈ Et〉

the combination of the system Γ=(Md, Ed, nd)d∈∆.

Theorem 1 If Γ is combinable and splits over σ (two technical conditions)
we have:

If B(d)
+ ⊆Md defines a basis of (Md/〈Ed〉)+ for each d ∈ ∆ then

⋃
d∈∆

B
(d)
+ ⊆⊕

d∈∆

Md defines a basis of L+.
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— The Cyclotomic Module —

Let

Gd={1 ≤ b < d; (b, d)=1}, σb = d− b for b ∈ Gd,
Ap = {0, . . . , p− 1}, σa = p− 1− a for a ∈ Ap.
Write Σ(S) for

∑
s∈S

s.

Define the cyclotomic module Z(n) as follows:

For n = p prime let Z(p) = 〈Gp〉/〈Σ(Gp)〉.

For n = q = pα, α > 1 let
Z(q) = 〈Gq/p〉 ⊗ 〈Ap〉/〈Σ(Ap)〉.

For n = q1 · · · qr let Z(n) = Z(q1)⊗ · · · ⊗ Z(qr).

Lemma 3
Z(n) ∼= Mn/〈En〉

where Mn = 〈Gn〉 and

En = {s(n, p, a); p|n with p prime, a ∈ Gn/p}

with
s(n, p, a) = Σ({x ∈ Gn; x ≡ a mod (n/p)}).
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— The Cyclotomic System —

The nth cyclotomic system Γ(n) is defined as a system (Md, Ed, nd)d|n
with

Md = 〈Gd〉,

Ed as before if d is not prime, else Ed = ∅,

nd : Ed →
⊕

t|d,t6=d
Mt

s(d, p, a) 7→
{

−[d/p; a] if p2|d,
[d/p; p−1a]− [d/p; a] if p26 |d,

where [m;x] means y ∈ Gm with x ≡ y mod m.

We denote the combination of Γ(n) by L(n).

Lemma 4

If 4 6 |n then Γ(n) is combinable and splits
over σ.

If 4|n we can make some modifications to get a similar result.

−→ we can construct a basis of L(n)+ by weak σ-bases of the modules
Md/〈Ed〉.
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— Cyclotomic Numbers —

Let εd be a primitive dth root of unity. We call

D(n) = 〈1− εad; a ∈ Gd, d|n〉/〈±εn〉

the group of the nth cyclotomic numbers.

Lemma 5 The sequence

0→ T → L(n)/(1− σ)L(n)
µ→ D(n) → 1 (∗)

where T is the torsion group of L(n)/(1 − σ)L(n) is exact. The homomor-
phism µ is defined by the maps µd : Gd → D(n), a 7→ 1− εad for d|n.

−→ From (∗) follows L(n)+
∼= D(n).

Let D̂(n) = D(n)/
∏

d|n,d6=n
D(d).

Theorem 2 Let B̂d ⊆ D(n) define a basis of D̂(d).

(a)
⋃
d|n
B̂d is a basis of D(n) if 46 |n.

(b) {1− ε4} ∪
⋃
d|n
d 6=2,4

B̂d is a basis of D(n) if 4|n.
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— Cyclotomic Units —

Define the group of nth cyclotomic units by

C(n) = D(n) ∩ (Z[εn]/〈±εn〉).

Let Ĉ(n) = C(n)/
∏

d|n, d6=n
C(d).

The connection between cyclotomic units and cyclotomic numbers is given
by the two isomorphisms

Ĉ(n) ∼= D̂(n) if n is not a prime power,

Ĉ(q) ∼= 〈
1− εaq
1− εq

; a ∈ Gq〉 ≤ D̂(q) if n = q is a prime power.

Theorem 3 If B̂d ⊆ C(n) defines a basis of Ĉ(d) for d|n then Bn =
⋃
d|n
B̂d

is a basis of C(n).

−→
⋃
d∈N

B̂d defines a basis of C(∞) :=
⋃
d∈N

C(d).
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— Relations of Cyclotomic Units —

Consider again the exact sequence

0→ T → L(n)/(1− σ)L(n)→ D(n) → 1.

There are three kinds of relations in D(n).

Norms: NQ(εn)→Q(εd)(1− εn) ∈ D(d)

for instance: (1− ε18)(1− ε718)(1− ε13
18) = 1− ε6

−→ relations in L(n).

Complex conjugation:
1− εn = −εn1− εn = −εn(1− ε−1

n )

−→ factoring out (1− σ)L(n).

Ennola-relations: . . .

−→ T .

Ennola-relations can be constructed explicitely by means of σ-bases. We
have

T ∼= H0(σ,L(n)) ∼= Fm+(L(n))
2 .
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— The Stickelberger Elements —

A similar construction as for the group of cyclotomic units can be done for
the Stickelberger ideal. Let In the ideal generated by the Stickelberger
elements

θ(a) =
∑
τ∈Gn

〈−aτ/n〉τ−1

and ωn = Σ(Gn) for n odd and ωn = 1
2Σ(Gn) for n even. Then we have an

exact sequence

0→ T → L(n)/(1 + σ)L(n) ν→ In/〈ωn〉 → 0.

where T is the torsion group of L(n)/(1 + σ)L(n). The homomorphism ν is
given by the maps

νd : Gd → In, a 7→ θ(an/d).

So with the same mechanism used for cyclotomic units we can construct
bases and relations, especially Ennola-relations for In.
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