Let M be a module with an involution σ.
A weak σ-basis of M is a triple $\left[E^{0}, E^{+}, E^{-}\right]$of subsets of M such that the union

$$
B=E^{0} \cup \sigma E^{0} \cup E^{+} \cup E^{-}
$$

is disjoint, B is a basis of M and

$$
\begin{aligned}
& \sigma e \equiv e \bmod \left\langle E^{0} \cup \sigma E^{0}\right\rangle \text { for } e \in E^{+}, \\
& \sigma e \equiv-e \bmod \left\langle E^{0} \cup \sigma E^{0}\right\rangle \text { for } e \in E^{-} .
\end{aligned}
$$

We write $B=\left[E^{0}, E^{+}, E^{-}\right]$for short.

Note that

$$
m^{+}=m^{+}(M)=\left|E^{+}\right| \text {and } m^{-}=m^{-}(M)=\left|E^{-}\right|
$$

are invariants of M. We have

$$
H^{0}(\sigma, M) \cong \mathbf{F}_{2}^{m^{+}} \text {and } H^{1}(\sigma, M) \cong \mathbf{F}_{2}^{m^{-}}
$$

$$
A=\{a, \sigma a, b, \sigma b\}, \mathcal{E}=\left\{\sum_{x \in A} x\right\}:
$$

$[\{a, b\}, \emptyset, \emptyset]$ defines a weak σ-basis of $\langle A\rangle$,
$[\{a\}, \emptyset,\{b\}]$ defines a weak σ-basis of $\langle A\rangle /\langle\mathcal{E}\rangle$.

Let

$$
\begin{aligned}
& B=\left[E^{0}, E^{+}, E^{-}\right] \text {be a weak } \sigma \text {-basis of } M . \\
& C=\left[F^{0}, F^{+}, F^{-}\right] \text {be a weak } \sigma \text {-basis of } L .
\end{aligned}
$$

Then $\left[G^{0}, G^{+}, G^{-}\right] \subseteq M \times L$ with

$$
\begin{aligned}
& G^{0}=\left(E^{0} \times C\right) \cup\left(E^{+} \times F^{0}\right) \cup\left(E^{-} \times F^{0}\right), \\
& G^{+}=\left(E^{+} \times F^{+}\right) \cup\left(E^{-} \times F^{-}\right), \\
& G^{-}=\left(E^{+} \times F^{-}\right) \cup\left(E^{-} \times F^{+}\right)
\end{aligned}
$$

defines a weak σ-basis of $M \otimes L$.

Let $\left[E^{0}, E^{+}, E^{-}\right]$be a weak σ-basis of M. Then $E^{0} \cup E^{+}$defines a basis of $M_{+}=M / \operatorname{ker}_{M}(\sigma+1)$.

Lemma 1 Given an exact sequence

$$
\begin{equation*}
0 \rightarrow M \rightarrow L \rightarrow K \rightarrow 0 . \tag{*}
\end{equation*}
$$

Let $\left[F^{0}, F^{+}, F^{-}\right] \subseteq L$ define a weak σ-basis of K. If (*) splits over σ then $E^{0} \cup E^{+} \cup F^{0} \cup F^{+}$defines a basis of L_{+}.

Lemma 2 Let

$$
0=L^{(0)} \leq L^{(1)} \leq \cdots \leq L^{(i)} \leq \cdots \leq L=\bigcup_{i=0}^{\infty} L^{(i)} .
$$

be a chain with the property that for every $i \in \mathbf{N}$ there exists a module $M^{(i)}$ such that the sequence

$$
0 \rightarrow L^{(i-1)} \rightarrow L^{(i)} \rightarrow M^{(i)} \rightarrow 0
$$

is exact and splits over σ. If $B_{+}^{(i)} \subseteq L^{(i)}$ defines a basis of $M_{+}^{(i)}$ for all $i \in \mathbf{N}$ then $\bigcup_{i=1}^{\infty} B_{+}^{(i)}$ defines a basis of L_{+}.

Let Δ be an appropriate indexing set and for $d \in \Delta$:

$$
\begin{aligned}
& M_{d} \text { a module, } \\
& \mathcal{E}_{d} \subseteq M_{d} \\
& \mathrm{n}_{d}: \mathcal{E}_{d} \rightarrow \bigoplus_{t<d} M_{t} \text { a mapping. }
\end{aligned}
$$

Then we call the module $\mathcal{L}=N / Q$ with

$$
\begin{aligned}
& N=\bigoplus_{t \in \Delta} M_{t}, \\
& Q=\sum_{t \in \Delta}\left\langle r+\mathrm{n}_{t}(r) ; r \in \mathcal{E}_{t}\right\rangle
\end{aligned}
$$

the combination of the system $\Gamma=\left(M_{d}, \mathcal{E}_{d}, \mathrm{n}_{d}\right)_{d \in \Delta}$.

Theorem 1 If Γ is combinable and splits over σ (two technical conditions) we have:
If $B_{+}^{(d)} \subseteq M_{d}$ defines a basis of $\left(M_{d} /\left\langle\mathcal{E}_{d}\right\rangle\right)_{+}$for each $d \in \Delta$ then $\bigcup_{d \in \Delta} B_{+}^{(d)} \subseteq$ $\bigoplus_{d \in \Delta} M_{d}$ defines a basis of \mathcal{L}_{+}.

Let
$G_{d}=\{1 \leq b<d ;(b, d)=1\}, \sigma b=d-b$ for $b \in G_{d}$,
$A_{p}=\{0, \ldots, p-1\}, \quad \sigma a=p-1-a$ for $a \in A_{p}$.
Write $\Sigma(S)$ for $\sum_{s \in S} s$.

Define the cyclotomic module $Z(n)$ as follows:
For $n=p$ prime let $Z(p)=\left\langle G_{p}\right\rangle /\left\langle\Sigma\left(G_{p}\right)\right\rangle$.
For $n=q=p^{\alpha}, \alpha>1$ let

$$
Z(q)=\left\langle G_{q / p}\right\rangle \otimes\left\langle A_{p}\right\rangle /\left\langle\Sigma\left(A_{p}\right)\right\rangle
$$

For $n=q_{1} \cdots q_{r}$ let $Z(n)=Z\left(q_{1}\right) \otimes \cdots \otimes Z\left(q_{r}\right)$.

Lemma 3

$$
Z(n) \cong M_{n} /\left\langle\mathcal{E}_{n}\right\rangle
$$

where $M_{n}=\left\langle G_{n}\right\rangle$ and

$$
\mathcal{E}_{n}=\left\{s(n, p, a) ; p \mid n \text { with } p \text { prime, } a \in G_{n / p}\right\}
$$

with

$$
s(n, p, a)=\Sigma\left(\left\{x \in G_{n} ; x \equiv a \bmod (n / p)\right\}\right)
$$

The nth cyclotomic system $\Gamma(n)$ is defined as a system $\left(M_{d}, \mathcal{E}_{d}, \mathrm{n}_{d}\right)_{d \mid n}$ with

$$
M_{d}=\left\langle G_{d}\right\rangle
$$

\mathcal{E}_{d} as before if d is not prime, else $\mathcal{E}_{d}=\emptyset$,

$$
\begin{aligned}
\mathrm{n}_{d}: \mathcal{E}_{d} & \rightarrow \bigoplus_{t \mid d, t \neq d} M_{t} \\
s(d, p, a) & \mapsto\left\{\begin{aligned}
&-[d / p ; a] \\
& \text { if } p^{2} \mid d, \\
& {\left[d / p ; p^{-1} a\right]-[d / p ; a] } \text { if } p^{2} \nmid d,
\end{aligned}\right.
\end{aligned}
$$

where $[m ; x]$ means $y \in G_{m}$ with $x \equiv y \bmod m$.
We denote the combination of $\Gamma(n)$ by $\mathcal{L}(n)$.

Lemma 4

If $4 / \mid n$ then $\Gamma(n)$ is combinable and splits
over σ.

If $4 \mid n$ we can make some modifications to get a similar result.
\longrightarrow we can construct a basis of $\mathcal{L}(n)_{+}$by weak σ-bases of the modules $M_{d} /\left\langle\mathcal{E}_{d}\right\rangle$.

Let ϵ_{d} be a primitive d th root of unity. We call

$$
D^{(n)}=\left\langle 1-\epsilon_{d}^{a} ; a \in G_{d}, d \mid n\right\rangle /\left\langle \pm \epsilon_{n}\right\rangle
$$

the group of the nth cyclotomic numbers.

Lemma 5 The sequence

$$
\begin{equation*}
0 \rightarrow T \rightarrow \mathcal{L}(n) /(1-\sigma) \mathcal{L}(n) \xrightarrow{\mu} D^{(n)} \rightarrow 1 \tag{*}
\end{equation*}
$$

where T is the torsion group of $\mathcal{L}(n) /(1-\sigma) \mathcal{L}(n)$ is exact. The homomorphism μ is defined by the maps $\mu_{d}: G_{d} \rightarrow D^{(n)}, a \mapsto 1-\epsilon_{d}^{a}$ for $d \mid n$.
\longrightarrow From (*) follows $\mathcal{L}(n)_{+} \cong D^{(n)}$.

Let $\widehat{D^{(n)}}=D^{(n)} / \prod_{d \mid n, d \neq n} D^{(d)}$.
Theorem 2 Let $\widehat{B_{d}} \subseteq D^{(n)}$ define a basis of $\widehat{D^{(d)}}$.
(a) $\bigcup_{d \mid n} \widehat{B_{d}}$ is a basis of $D^{(n)}$ if $4 \nmid n$.
(b) $\left\{1-\epsilon_{4}\right\} \cup \bigcup_{\substack{d \mid n \\ d \neq 2,4}} \widehat{B_{d}}$ is a basis of $D^{(n)}$ if $4 \mid n$.

Define the group of nth cyclotomic units by

$$
C^{(n)}=D^{(n)} \cap\left(\mathbf{Z}\left[\epsilon_{n}\right] /\left\langle \pm \epsilon_{n}\right\rangle\right) .
$$

Let $\widehat{C^{(n)}}=C^{(n)} / \prod_{d \mid n, d \neq n} C^{(d)}$.

The connection between cyclotomic units and cyclotomic numbers is given by the two isomorphisms

$$
\begin{aligned}
& \widehat{C^{(n)}} \cong \widehat{D^{(n)}} \text { if } n \text { is not a prime power, } \\
& \widehat{C^{(q)}} \cong\left\langle\frac{1-\epsilon_{q}^{a}}{1-\epsilon_{q}} ; a \in G_{q}\right\rangle \leq \widehat{D^{(q)}} \text { if } n=q \text { is a prime power. }
\end{aligned}
$$

Theorem 3 If $\widehat{B_{d}} \subseteq C^{(n)}$ defines a basis of $\widehat{C^{(d)}}$ for $d \mid n$ then $B_{n}=\bigcup_{d \mid n} \widehat{B_{d}}$ is a basis of $C^{(n)}$.
$\longrightarrow \bigcup_{d \in \mathbf{N}} \widehat{B_{d}}$ defines a basis of $C^{(\infty)}:=\bigcup_{d \in \mathbf{N}} C^{(d)}$.

Consider again the exact sequence

$$
0 \rightarrow T \rightarrow \mathcal{L}(n) /(1-\sigma) \mathcal{L}(n) \rightarrow D^{(n)} \rightarrow 1
$$

There are three kinds of relations in $D^{(n)}$.

$$
\text { Norms: } \quad N_{\mathbf{Q}\left(\epsilon_{n}\right) \rightarrow \mathbf{Q}\left(\epsilon_{d}\right)}\left(1-\epsilon_{n}\right) \in D^{(d)}
$$

for instance: $\left(1-\epsilon_{18}\right)\left(1-\epsilon_{18}^{7}\right)\left(1-\epsilon_{18}^{13}\right)=1-\epsilon_{6}$
\longrightarrow relations in $\mathcal{L}(n)$.

Complex conjugation:

$$
\begin{aligned}
1-\epsilon_{n}=-\epsilon_{n} \overline{1-\epsilon_{n}} & =-\epsilon_{n}\left(1-\epsilon_{n}^{-1}\right) \\
& \longrightarrow \text { factoring out }(1-\sigma) \mathcal{L}(n)
\end{aligned}
$$

Ennola-relations: ...

$$
\longrightarrow T .
$$

Ennola-relations can be constructed explicitely by means of σ-bases. We have

$$
T \cong H^{0}(\sigma, \mathcal{L}(n)) \cong \mathbf{F}_{2}^{m^{+}(\mathcal{L}(n))}
$$

A similar construction as for the group of cyclotomic units can be done for the Stickelberger ideal. Let I_{n} the ideal generated by the Stickelberger elements

$$
\theta(a)=\sum_{\tau \in G_{n}}\langle-a \tau / n\rangle \tau^{-1}
$$

and $\omega_{n}=\Sigma\left(G_{n}\right)$ for n odd and $\omega_{n}=\frac{1}{2} \Sigma\left(G_{n}\right)$ for n even. Then we have an exact sequence

$$
0 \rightarrow T \rightarrow \mathcal{L}(n) /(1+\sigma) \mathcal{L}(n) \xrightarrow{\nu} I_{n} /\left\langle\omega_{n}\right\rangle \rightarrow 0 .
$$

where T is the torsion group of $\mathcal{L}(n) /(1+\sigma) \mathcal{L}(n)$. The homomorphism ν is given by the maps

$$
\nu_{d}: G_{d} \rightarrow I_{n}, a \mapsto \theta(a n / d) .
$$

So with the same mechanism used for cyclotomic units we can construct bases and relations, especially Ennola-relations for I_{n}.

